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ABSTRACT

-We show5,that solutions of the Cauchy problem for systems of two

conservation laws decay in the supnorm at a rate that depends only on the

norm of the initial data. This implies that the dissipation due to the

entropy dominates the nonlinearities in the problem at a rate depending only
on the 'L norm of the initial data. Our results apply to any BV initial

data u0 satisfying u 0(t a) = 0, d Sup{u 0(.)) << 1. The problem of

decay with a rate independent of the support of the initial data is central to

the issue of continuous depen ce in systems of conservation laws because of

the scale invariance of equations. Indeed, our result implies that the

constant state is able with respect to perturbations in L~o. This is the

first st#bi y result in an LP norm for systems of conservation laws. It

is ,,icial that we estimate decay in the supnorm since the total variation

dbes not decay at a rate independent of the support of the initial data.

>The main estimate requires an analysis of approximate characteristics for

its proof. A general framework is developed for the study of approximate

characteristics, and the main estimate is obtained for an arbitrary number of

equations.

AMS (MOS) Subject Classifications: 65M10, 76N99, 35L65, 35L67

"-- Key Words: Riemann Problem, Random Choice Method,* Decay, Stability;

Continuous Dependence; Conservation Laws' Cauchy Problem.

Work Unit Number 1 - Applied Analysis ., 6

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. DMS-8210950, Mod. 1.

% : ' ". .. ,



.- -~ * - - . -- -. V .-. 0 *:I; V 7

SIGNIFICANCE AND EXPLANATION

A system of two conservation laws in one dimension is a set of first

order nonlinear partial differential equations of the form
Ut + f(u,v) x = 0 ,

(1)

vt + g(u,v) x = 0 ,

where (u,v) is a vector function of (x,t), x e R, t > 0. The Cauchy

problem asks for a solution of (1) given the "initial" values of u and v

at time t = 0. Equations of type (1) arise, for example, in gas dynamics

where they express the conservation of quantities like mass, momentum and

energy, when diffusion is neglected. Typically, smooth solutions of (I)

cannot be found. This is due to the formation of shock waves. Shock waves

are the mechanism by which entropy is dissipated in solutions of (1).

Moreover, this mechanism is isolated in equations of type (1) since this is

the only dissipative mechanism occurring in solutions of (1). The results in

this paper imply that the dissipation of entropy is a dominant effect in the

sense that it forces solutions to decay to zero at an estimable rate.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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P DECAY WITH A RATE FOR NONCOMPACTLY SUPPORTED SOLUTIONS OF CONSERVATION LAWS

Blake Temple

41. INTRODUCTION

Consider the Cauchy problem for a system of n conservation laws

ut + f(u) x = 0 ,

(1)

e2 u(x,0) = u (x) ,

where u E (Ul, ... Un), and x e R, t e R+. We study decay and continuous dependence in'

solutions of (1) which are obtained as limits of approximate solutions generated by the

random choice method of Glimm [6]. Thus we are interested in solutions that take values in

a neighborhood U of some constant state u. we assume that df, the matrix derivative

of f, is smooth, has real and distinct eigenvalues Al < A2 <...< An  in U, and that

VX p R > 0 in U [9]. Here R- denotes the unit right eigenvector corresponding to

eigenvalue A . By changing the frame or translating the flux function f if necessary,p

we assume without loss of generality that u = 0 and p > 0, p = 1,...,n.

Let u(x,t) denote a weak solution of (1) which is a limit of approximate solutions

generated by the random choice method. The main result of this paper is the following

theorem which is proved in the case n = 2:

ThBhb (1) For every V > I and 0 < a < 1 there exists constants 6 = 6(V) < 1 and

C(M) > I such that, if u0 () satisfies

(2) U0 (±) = 0

(3) TV{u 0 (.)1 < V

and

(4) 1u0 (.)1S < 6

then

(5) Uu(*,t)i C C(G){log[ t 2+a
S lu ou01 IL

for all t > 1u0 (o)I . ihere constants depend only on f and their arguments, I S

denotes supnorm and I I denotes LI norm; i.e.1
L

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material
is based upon work supported by the National Science Foundation under Grant No.
DMS-8210950, Mod. 1.
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If we fix the initial data uo() and lot t - *, then (5) gives the decay of the

solution u(,t) in the supnorm ata rate independent of the support of the data. Said

differently, (5) verifies that the dissipation in solutions of (1) due to increasing

entropy overcomes the nonlinearities in the problem at a ri-e depending only on the L1 -norm

of the initial data [cf [9]). If we fix t and take a sequence of initial data tending to

zero in L1 , then (5) gives a rate at which the supnorm at time t tends to zero with

the L1 norm of the initial data. Because the values of u at time t have a bounded

domain of dependence, (5) also gives a rate at which u(o,t) tends to zero in Locas

the initial data tends to zero in L oc. This is the first continuous dependence result

for systems in the norm L1 .

Other decay results for systems have been obtained by Guimm/Lax, DiPerna and Liu [4,

5, 7, 10-14]. For these results decay is obtained by means of estimates for the decay of

the total variation. In the case of nonperiodic initial data, a rate of decay in the total

variation is obtained only in the presence of compactly supported data, and the rate

depends on the support of the data. It is crucial in (5) that we estimate the decay in the

supnorm instead of the total variation norm because simple examples show that the total

variation does not decay at a rate that depends only on the L' norm of the initial data.

Our interest in the LI norm in (5) stems from an interest in the problem of

stability, by which we mean the problem of the continuous dependence of solutions on the

initial data. To put the issue of stability into perspective, we make the following

definitions: we say that solutions of (1) are strongly stable in a norm I I if there is

a constant C > 0 such that

(6) lu(*,t) - v(.,t)l 4 Clu(.,0) - v(.,0)l

for all weak solutions u and v. We say that solutions of (1) are weakly stable in I I

with a rate if

-2-

• .., , %



%7~~ ~ ~ ~ a-. ,7-: I... . .- -

(7) Wu(*,t) - v(.,t)l 4 F(Iu(*,O) - V(.,O)I

for all weak solutions u and v, where F is a fixed function satisfying lrm F(E) - 0.

It is well known that solutions to scalar conservation laws are L1 -contractive (cf 8]. In

the language above this says that solutions of a scalar conservation law are strongly

stable in L1 with constant C = I. Moreover, by studying solutions containing a single

shock, It is apparent that solutions of (1) are not weakly stable in the supnorm or

in the total variation norm, and are not strongly stable in any LP, p > 1. This leaves

L as a leading candidate for studying stability in systems of conservation laws.

Estimate (5) proves that the constant state is weakly stable in L1oc* As a further

comment, in (22] it is proven that solutions to systems are not L1-contractive relative to

a constant state in any metric that is compatible with the u-space topology. This directly

implies that there is no metric D and constant w > 0 for which the following Gronwall

type estimate holds in any neighborhood of u:

d~ Of~ ~ ~jxw D(uxQ),u)dx
tr

Thus, (5) gives the stability of the constant state in LI  in a regime where a Gronwall
Xoc

inequality fails in some essential way. It is an open problem whether the constant state

is strongly stable in L 1
loc

In the case of periodic initial data, Theorem (1) holds with u0 (*) replaced by the

initial data in one period. Thus (5) gives a decay in Ie at a rate independent of the

period. Again, for periodic initial data, the total variation does not decay at a rate

depending only on the L norm of the data, and for the previous decay results the rate of

decay in the total variation depends on the length of the period in the initial data. Our

methods also give directly that periodic data decays like t) 4 where P is the length of

a period. This however, is not sharp in light of the t- 1 decay rate obtained by

Glimm/Lax [7].

We now indicate the proof of Theorem (1). Theorem (1) is obtained by estimating the

decay of the quadratic functional Q which was constructed by Glimm in 161. Specifically,

let h denote a mesh length in x, and let uh(x,t) denote a corresponding approximate

-3-
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solution generated from initial data u0 (.) by the random choice method. Roughly

speaking, the values of uh at time t are obtained by approximating the actual solution

by a set {Y71 of simple waves each of which moves at close to characteristic speed. The

function Q(t) is defined by

where, again roughly, the sum is over all pairs of waves at time t that will interact at

some later time due to differences in the wave speeds. (In the words of Glimm, summed over

all "approaching" waves.) Here, IY.1 in (8) denotes the strength of the wave 76  (for

details see sections (2) and (3)). In [6] it is proved that Q is a positive decreasing

function of time. Heuristically, this is because a term is lost from the sum in (8)

whenever two waves cross each other in the xt-plane. The functional Q measures the

potential for interaction of waves, but contains no information regarding the time at which

interactions will occur. Theorem (1) is a corollary of the following technical lemma which

is a sharp estimate for the rate at which Q decreases as a function of the supnorm and

the LI norm. For this lema, assume that n - 2 (or that there exists a coordinate

system of Riemann invariants).

LEMMA (2A): Let Q denote the quadratic functional associated with an arbitrary

approximate solution uh which is generated from initial data u0 (*) that satisfies

conditions (2) - (4) of Theorem (1). Then there exists a constant G > 0 depending only

on f and V and a mesh length h0 = h0( ,M) such that, if

(9) luh (.,0)l ) 2

(10) Huh (',0) = eLI

and

(11) h 4 h0

then

(12) Q(0) - Q((GM) 2 1

(GM)
2

-4-
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In words, (12) states that Q will decrease by an amount on the order of the supnorm

squared in a time which is on, I.he order of the L1-norm divided by the supnorm squared. For

the case n > 2 we obtain (12) under the assumption that the total variation of u0 (.) is

small (cf. 6].

LEMMA (2B): If n > 2, then there exists V << I such that, if u0 (.) satisfies (2) and

(3) of Theorem (1), then the conclusions of Lemma (2A) hold.

1,i the case of periodic initial data, Lemmas (2) hold with u 0() replaced by the

initial data in each period.

The proof of Lemma (2) is given in se(ctioi 6. (See Theorem 6.3 for a detailed

restatement of Lemma 2.) The proof is quitt technical and uses the theory of wave

tracing. The theory of wave tracing was developed by Liu to prove that the random choice

method converges weakly so long as the sample sequence is equidistributed [15]. Wave

tracing is a method of keeping track of left and right states on approximate

characteristics [1, 4, 5, 7, 10, 15, 16]. Previous decay results for systems use the

theory of approximate characteristi.,s, bit rely on global mechanisms and do not require

keeping track of left and right states. (It in important, however, to recognize that in

[5], these methods are localized, and decay in Q is used to control decay in the total

variation for non-compactly supported data. Of course, no rate can be obtained for decay

in the total variation.) Here we develop the theory of wave tracing from what we believe

is a simpler set of definitions and a simpler notation than has been previously given. The

pres,-nt-tiWn is general, and essentially self contained. Motivations for the constructions

can be found in [15, 16].

We now deduce Theorem (1) from Lemma (2A) using the basic results of Glimm. The

renatrmder of this paper is then devoted to the proof of Lemma (2). We first give a precise

statement of the results in [6]. (See f23] for a proof of the supnorm estimates.)

LEMMA (GL): Assume the u0 satisfies the conditions (2), (3) and (4) of Theorem (1).

Then each approximate solution uh is defined for every h > 0 aricd t > 0 arid, moreover,

there G o'is- G 0 such that

-5-
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(13) TV{uh(.It)) < G0 TV{uo(0)}

(14) luh(.,t)l ( G01u 0 (0)I S

(15) lu h(*,t 2 ) -u h(,t)I L1 < G0 {h + It2 -t1 j}

and

(16) Q(t2 - Q(t1 ) C 0

for all ti < t2. (From here on out we use Go to denote a generic constant that depends

only on V and f.)

In the case of arbitrary n, the results in [61 are that (13), (15) and (16) hold so

long as V is sufficiently small. The re4son we can obtain (5) in the case n - 2 and

not n > 2 is that we use (14), a result that is not known for n > 2. (For n > 2 one

can show by our methods th.it tthore exists a sequence of times tj + - for which (5)

holds.)

So assume that Leasa (2A) and the assumptions of Theorem (1) hold. Let N > I be

given. We estimate the t~me At which iuh ( 4 for h ( h0 . Let Go > 1 be large

enough so that Q(O) 4 Go . Set

(17) G 1 
= G0 G

and let

(18) N 3 ((GI)
2 ] + I

where ( ] denotes "greatest integer in". Define the times t1 , ...,tN  between which Q

decreases by an amount (G 1M)-
2 as follows:

(19) to = 0

tn+ 1  Supit > tn $ Q(t n+) - Q(t) 4 (GM 21

Define

(20) C *uh(.tn+)I

T~~~et~~ n L NI htsaletn *t)
T*t in r. N he that smallest integer for which

(21) tm+1 - tm > Cm(G1 M)2

if such an integer exists. Otherwise let m - N. Now if tm < =, then Leima (2A) implies

that

(22) Gu (-t +)I1C G
0

-6-
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To see this, note that the contrapositive of Lemia (2A) states that if
2) 1 2lh(0,}l

Q(0) - Q(E(G4)G
2 ) <. then S < If tm < -, then this applies with

(G )h

uh(-,0) replaced by u (.,t +) and M replaced by G0M. (Note that if m - U and

tN < -, then (21) holds in this case because Q can incur no more than N decreases of

magnitude (GM)- 2 . ) Thus if tm < -, then by (14)

luh (,t)l <i

for all t > ti as stated.

It remains only to estimate tm. We show that

(G2)

(23) t( (G2M) 2 0

where G2 = 2GoG 1 . Wtth,.it loss of generality, assume that tI > e and tI > h so that

(15) gives

(24) en C Gtn

where again we take Go  to be generic. Thus if n < m,

(25) tn+ i - tn  S n(G1M)
2  G0tn(G1I)

2

so that

(26) tn*7 < {1 + G1(GIM)2}t •

By induction this implies that

tM 4 {1 + G 0(G IM) 2}(M-1I

• { + G 0(G IM) 2}m 'I 0 (G IM) 2

ti + G0 (GIM) 2 0

(27) 1 + G0 (GIM) 2}0 2} (G 1M)

( {I + G0 (GIM) 2 (GM 20

(G2M)
2

4 (G 2M) ( 0

where G2 = 2GoG I. Thus we have that

(28) luh(.,t)Is < )

so long as

-7-
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(G 2M)

t ; (G2M) 2 C

(G2MI
2

In particular, let t = (G2M) and choose 0 < ( < 1. Then

(29) log[t0j (G2M) 
2log(G M ) (C(G)M) 2+ a

for some CM0) > 0. Thus

C(O){log .- ) - > I > Iu (1*t)I
E M S

Now if u is a limit of approximate solutions uh as h + 0, then it follows that

luh (*,O)E 1 + lu0 ()It1' and we conclude that

ft t ] 2
(31) lu(l,t)l e C(o){logg flut l 21

S lu0 (.§1

This completes the proof of Theorem (1).

In the case of periodic data, the estimate (31) is obtained in the same manner by

replacing u0  by the initial data in one period. In this case C(O) is independent of

the period. For periodic data we can also use Lemma (2) to obtain a rate of decay which

depends on the period, since for periodic data,

(32) lu h(,t)L1 < G0 P

where P is the length of one period. In this case we can use (32) instead of (24) and
h1,

argue as follows: if uh(,t) > 1 , then Lemma (2) gives

Q(t) - Q(t + G0 P(GIM)2) I 2
(GIM)

2

Since Q(0) 4 Go, we see that Q can incur only G0 (GM)
2  decreases of magnitude

1 1
before Q(t) 

• 
-- in which caseCGIM4)2  (GIM4) 2

luhl°,t)l S < G0M
0

Thus lUh(-,t)ls must be smaller than --I before time T = GoP(GIM)2G0 (GIM)
2  CPM4 .

-8-
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This gives that

au h(.,t) S  G0M

4U

for all t ) CPM 4 , in which case

(33) uh,t)n c ) 4

S P

we note that (33) is not sharp (t-  is sharp, cf. Glimm/Lax [7]). This might be expected

since we are not invoking global mechanisms of decay as in [7].

The remainder of this paper is devoted to the proof of lemmas (2) and (3). Before

embarking on the proof, we briefly discuss the idea behind it. The idea is that, since
1

u ) = 0, if Eu0 ()I s = I and lu (.)Il1 E, then there must be a "spike" in the
0S M 0 1

initial data of height on the order of - in Jul and width in x on the order of EM.

ZMM

L

which implies

Ix.- xAI c 2ME

Thus consider the case

u xA < x < xB

0  0 otherwise

where Jul = j, xB - xA = cM. This data resolves into four simple waves associated with

the Riemann problems [O,u] and [u,0] [cf. §2, [9]). Label these waves all a2, 61 and

2 as in figure 1.

t

Ol { 2 1 82

u=O u-u u=OU 0 U=U U u 0

Figure 1

-9-
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has been defined in such a way that properties (4.1) - (4.3) are satisfied. We define

M P(j+1), r p(J+1) in terms of M p(j), r p(J) and see that properties (4.1) -(4.3) hold

for M p(j+1), r p(J+1), respectively.

To define M p(J+1) and r (J+1), we define the sets

M i(J+ ) = (9. em (J+1) . xj) = il
p p

and

YtI em (j+1)

p

M (J+i) =-{M (J) n 4(j-ifl U {U M i (J+i))
p p i p

r (JI) E{YP LeM (J+1))

so fix i e z. Define

(412 L ( e M (3) X(J) =i, sgn(9.) ~'sgn(Yp )

if Y - 0, then define

M (J+1) L,,

r (3+1) =Y I. e ~p 9

So assume 1'0. Let U X"~al c Mp(j) denote the indices in Mp(J)

satisfying

sg( sgn{YP.

and ordered so that tk-I ' 9 k' 1 4 k 4 a-1, in the sense of Property (4.1). Define

UL iJ

R(YP )

k-i
a 0, a~ k I, y9 (ti- ), k 0,...,a

s=0 s

uk TOOk V1,

-23-



Property (4.3) expresses the fact that characteristics trace nonzero elementary waves

of a given family and sign:

PROPERTY (4.3): If I e M p(J), then the signed strength y,(t) of the characteristic

0 1
y£ is constant and nonzero in (t9I,tit). We write

(4.11) sgn{y (t)} sgn(X)

For convenience, we set

yp.(t) a 0

for t j it t t

We now define Mp(J) and r p(J) by induction on J. We simultaneously verify

properties (4.1) - (4.3) which are assumed in the induction step.

First assume J = I. Define

M (1) - {jq : P 0, p - 1,2, q L,R)

where jq is defined by
i

jq(0) =i,
i

q i if q = L

i+1 if q - R

Then for 0 C t < k E t1 , and Yiq 0, define

uL (t) - L (y)

uR (t) - R(Y )

iC1

It is easy to verify that properties 1, 2 and 3 hold for M P(1) and r p(1).

Now assume for induction that Mp (J) C NU(J) has been defined, and that for every

I e Mp (j),

y9 [t] = (uL(t),u R(t))

-22-
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ij. (so that, e.g. T~ (a ro;uL)). Then for tj t < j,

u L(t) uL
90 L

u R t) =u
ta

and

uR ()=uL (t) T( ;u
Ik-i k ;L

where Ok e (0,0R) and 10 k+ I > 0 k1' 1 4 k 4 a-i. We define

(4.) Yitk (t 0k+1 - k r

(i.e., round brackets around t to distinguish it from y [t]) to be the signed strength

of the characteristic ykat time t e (tjltj+i), I -C k a-i. Moreover, for 0 e (0,1)

and t e (tj1tj+1 ). we define

(4.7) ua(t) =-T(ak+ -Ok.IL

for 1 4 k < a-i. Note that if Property (4.2) holds, then (4.6) and (4.7) define y I(t)

and u (t) for all I e M (j), t < ti. We use (4.7) to define two characteristics yL

and y R corresponding to each a e (o,i) and each I e M p(J) satisfying X(J) i, as

a

follows:

t(j) if j 4 J-1

(4.8) £O(j) = i if j = J, q = L

i+1 if j = J, q =R

(4.10) Y Et] = (u a(t),u R(t))

(I.e., 0 determines a splitting of the characteristic y into a characteristic y L of

strength a Y,(t) and a characteristic yIRof strength (1-a)yj(t))-

%0
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n

M() = UM p(3)
p- 1

the RHS being a disjoint union. Corresponding to each k e M p(J) is the characteristic

L RyL = (uL'u t ) e r p(J)

each entry being a function of t for t 0  t < t t3. We let y (LtlRt)

denote the value of y at time t. The functions uL[t), uRIt] (the left and right

states of the characterisitcs Y at time t) are constant on intervals tj 4 t < tj+
0 1

for j0 4 j < ji. r(J) is the disjoint union

n
r(3) - u r pJ)

p-l

For convenience we set y Xt] - 0 for t E [tz,t L ).

Before defining M(J) and r(J) precisely, we first list three properties

(properties (4.1), (4.2) and (4.3)) which the characteristics satisfy. Then for

p - 1,...,n we simultaneously define M.(3), r (3), and verify properties (4.1) - (4.3)

by induction on J.

Property (4.1) states that each set MP(J), p - 1,...,n is partially ordered, and

expresses the fact that characteristics of the same family never croas

PROPERTY (4.1): If 11, I e Mp(J), then for every
o 1 .0 1

(4.4) j 0 [JJ~1 1 1 2 ,2

we have that either t1 (j) < t2 (j) or t2 (j) t t1 (J). If [j 0 12 I n Ej 0 I 1 and
1 2 X2 1

Yl(j) 4 12(j) for j satisfying (4.4), then we say that t1  X2  (or L1  lies to the

left of t2 )'

Property (4.2) states that the left and right states of the p-characteristics

I M.() that satisfy t(j) - i, j 4 J, partition the p-wave curve T (,L(yp )
p i

between L(yp ) and S(yp
ii i

PROPERTY (4.2): Let i e z, j e (0,J-11 be such that yp If 0. Let be

the set of p-characteristics I e Mp(J) satisfying t(j) = i, and ordered so that

C 4k+1 in the sense of Property (4.1). Let UL L(yPj), uR R(yi) and let

-20-



characteristics in detail.

Let

MijO'jl) ={jO,j 0+1,...,j 1

where jO < j1 are in the set {0,1,...,J}. Let

(4.1) -(j0 jl)= { = M(j0,jl)+ Z £(j) - L(j-1) e {0,1}}

0 1For each element of £ e R(j0 jl), define the function

(4.2) x I [t. 01 t,1] + R
:3 3

as follows:

x9I(tj) - x 10 j j

xit(t) = x9I(t ) + (x9I(tj+1 ) - x9I(t )]h, t3 < t 4 tj+ 1

Thus each element . e A(j0 ,jl) corresponds to a continuous, timelike, piecewise linear

curve in the xt-plane given by the graph of xt . Note that the graph of x' is defined in

it 0 ,t j] and connects successive mesh points, i.e., the slope of the curve is either 0
k

or E. If J, t is outside the domain of 9, x,, then we write 1(j) = , x9 (t) =

respectively.

Let

(4.3) l(j) = U W(j 0,31 )

0 1

Then for £ e 4(J), define j0, 1 to be the positive integers such that

it et 1fj,

lot to, = 0 , t' = t I"

i it

We presently define the set M(J) of indices for the characteristics, as well as the

set r(j) of characteristics, by induction on J. For p 1 1,...,n, the set of indices

for the p-characteristics is a set

Mp(j) cf(J)

and

-19-
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J4. DEFINITION OF APPROXIMATE CHARACTERISTICS

In this section we define the set of approximate characteristics (heretofor referred

to as "characteristics") associated with a given approximate solution uh and time level

T3 . In the next section, we study properties of the characteristics. The procedure is as

follows. We first define an index set (3) for the timelike piecewise linear curves that

connect successive mesh points (xitj) in the xt-plane (cf. 161. A subset M(J) c (J)

corresponds to the set of characteristics. We call this the index set for the character-

istics. Each element x e M(J) gives the position of an "elementary wave" y at

different time levels. The piecewise linear curves that are undefined at t - tj

correspond to elementary waves cancelled, and those undefined at t - 0 correspond to

elementary waves created by nonlinearities. We let N c M(J) denote the index set for all

such characteristics [cf. 151.

We define the elementary wave y, associated with £ e M(J) by assigning a left

state uL[t] and right state uR(t] to each time level that intersects the piecewise

U it~
linear curve defined by t. We define y1 [t] E (u [t],uR[t]), we call r(J) - UI I I eMCj)
the set characteristics defined for time tj. The assignment of states to characteristic

curves is done as follows: We first state three properties that the assignment should

satisfy, and then we assume the properties to hold in order to define the characteristics

at the induction step. Thus the characteristics are defined and the properties are

verified simultaneously at the induction step.

The characteristics determine a partitioning of the waves in uh appearing before

time tj. It is important to estimate the "fineness" of the partition. For Liu (15], the

fineness is built into the procedure by an initial partitioning of the waves. The cost of

having 4(J) as an index set is that we must estimate the fineness of the partition as a

function of J. This together with an estimate for the speed of characteristic curves is

given in Theorem (5.12). The remainder of section 5 is essentially devoted to obtaining

estimates for the change Iu[t] - uq[0] 1, q = L,R, in terms of changes in Q and in

terms of strengths of elementary waves assigned to characteristic curves that cross the

characteristic curve of £ in time [0,tj]. We now proceed with the definition of the

-18-
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then uhis well defined, takes values in U for all time, and moreover

(3.18) V < G0V0

(3.19) Go' )* D ( -

and

(3.20) *u h (*,t) u uh (,s)I 1 ( 0[ + I-l

for all j, s, t > 0.

LEKMA (GL3). Assume that u 0 (± 0 and that there exists a coordinate system of Riemann

invariants Ceg n - 2). Then for every V > 0 there exists > 0 such that if

(3.21) V0  V

and

(3.22) i h I

then uh is veil defined for all t ;0 0, takes values in U, and (3.18) -(3.20) hold

together with

(3.23) Hu h(*,t)I S G0 h('1S

(See [233 for a proof of Leimma (GL3).)

-17-



Two waves Yp and yp are said to approach at time t if one of two conditions

holds (6]s

(3.10A) p <p' and i > is

or

(3.10B) p - p and either Yp < or yp:s (0

For tj 4 t < tj.11  define (4]

(3.11) Q~t) 2-EIYP I lp

where the sum is over all pairs of waves Yp and 9': that approach at time tj.
ii i'i

Define

(3.12) Dii El-y~ i li1 I-YiFJ-i

where the sum is over all pairs of approaching waves that enter the diamond &Ai and

finally define the cancellation

i - i-i' +-1- +~p YI' -

Then Cjj measures the amount of p-wave cancelled from both Y pR and yp L at the
iii-1,i-1 '-

interaction in A j

The following lemmas are due to Glimm 14]). Let

(3.14) 1 = Ip y 1Ili 'p

estimate the total variation of uh (-,t) for t t ( j1

LEMMA (GLI). If uh 00, then for all i, J,

(.1)ii - Yi-li-I - Gij 1 ODij

This immediately implies

with JO 'Ii 4 Go. (Again, Go denotes a generic constant.)

LEMNA (GL2). There exists a constant V > 0 and a number Go> 0 such that if

(3.17) V 0 <s:V

-16-
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LCTpL ) - L(yp I
ij i

(3.7) R(YPL ) _ h(x + a h, t+-) - YL(y p)
ij ± 1+1 i+1 ii

pR ) R(p j('ij )i

more generally, if (3.6) does not hold, then define

P i i p i ii
(3.8) YpL - if a j *(Yp ) , < 0

0 otherwise

YP if a (CXA(L(yI) ,yp > 0f i i p ii i
(3.9) YPR~ 9' if a< yPY <0

ij i j i ii

0 otherwise

[Here, for example, Yis defined to be zero if the wave lies to the right of the sampleii

point xj + ajh, and YP1  if it lies to the left].

By construction, the waves p solve the Riemann problem for uL - uh(xi_1 +
ij

aj-1 h, tj) - L(yi), uR - uh(xi + aj.lh, tj) - R(Y n) that is posed at (x±,tj ) in the

approximate solution uh(x,t). Because we assume that all wave speeds are positive, the

waves TYi are formed by the interaction of the waves yip J1with the waves ,pL

at time tj_ , p - 1,2. To emphasize this, we let AiJ denote the diamond of interactions

centered at (xi,tj) [6, 1611 i.e., consisting of vertex points (xi.I + aj-1 h, tj),

(xi + akh, tj)i (xiti - Ik) and (xi,t j + 1 k). We say that the waves Ypj which

cross the upper wedge of the diamond are formed due to the interaction of the waves

- and ,t- 1  which cross the lower wedge of the diamond. We call a wave

that leaves the diamond Aiji and we call the nonzero waves among y PR and y pL

the waves that enter the diamond Aij.

-15-

* * ....... * -",.

• ," .- ,- .- • •, ..- *, ... *. - ,- V•%'/. .- .- :. .'., .. ;-S..'.;. ..... 5.'.,. s.,.,..,...'.7VA,.... k,,;c. A A ,,.



'a

§3. TIE RANDOKI CHOICE METHOD APPROXIMTES

In this section we define the approximate solutions of (1) generated by the random

choice method of Gli-m [6], and develop notation required for the subsequent sections.

Let h be a mash length in x, and let

(3.1) k - Ch

be the corresponding mesh length in t, C > Sup {IAn(u)I}. For i, j e z, j 0, let
ue1

X- ih, tj = jk. Let A be a sample sequence, j a)J.1 8 0 < aj < 1. For given

initial data u0 (*) c U, define the random choice method approximate solution

uh(x,t) uh(x,tp) by induction on j as follows: First, for xi 4 x < xi+,, define

(3.2) uh(x,O) = u (x) - u 0(xi + A)

Next, assume for induction that uh(x,t) has been defined for t < t . Define

(3.3) uh(x,tj) = uh(xi+ajh,tj- )  I

and for tj < t < tj+1, define uh(x,t) to be the solution of the Riemann problem posed

in (3.3) at time tj. By (3.1), uh is well defined so long as uh(x,tj) c U for all

t.

Let uh be any approximate solution that is well defined by the above procedure. Let

YP denote the name as well as the signed strength of the p-wave that appears in the

solution of the Riemann problem that is posed at (xi,tj) in the approximate solution

," uh. Define

L(yP ) B left state of the wave ypj

R(Yr ) E right state of the wave y .
p

If Y is a shock wave, define

(3.5) s(Yp ) - speed of wave yP
ii ij

If YP is a rarefaction wave, then the wave is "split" at time tj+i if

(3.6) A,(L(Yp < a <A (R(y k
)p ij h j p ij h

In this case define YpL and yPR by
ij ij

-14-
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by the condition

uk+1 e Yk(uk), 1 k n

we call T [cf [11] a wave strength measure for the p-simple waves if, for each
p

UL e U1 , TP(auL) is a parameterization of VP(uL) in Ul, a e R, and moreover

Tp e C2  with bounded third derivatives with respect to both arguments, TP(O;uL) = uL and

3p(T (o,uL ))
(2.3) p> 0p

30

If L(Yp ) = uL and R(=p ) - Tp(OuL), then we define the signed strength of YP to be

a. We let YP a 0 so that "YP" denotes both the name as well as the signed strength of

the wave. By (2.3), Yp < 0 for shocks and 9P > 0 for rarefaction waves.

In the following three sections we study the random choice method approximates and

associated approximate characteristics using arbitrary T to define wave strength. In

section b we define T by means of a best approximation to a coordinate system of'Riemann

invariants. The following lemma is a direct consequence of the fact that the speed s of

a shock is equal to the average characteristic speed to within terms that are quadratic in

the strength of the shock 19, 11, 17]:

LEMMA (2.1). Assume that uU - Tp(OluL), 0 < 0. Then the speed s of the corresponding

shock wave satisfies

= (L R + o(1)a 
2

-13-
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J2. THE RZEMANN PROBLEM

The Riemann problem is the initial value problem (1) where the initial data has the

form

(UL for x 4 0

u0 (x) 
u R for x > 0

We assume that the Riemann problem is uniquely solvable by the method of Lax (9] for all

uL and uR in a neighborhood U of u - 0. In particular, assume that all states that

appear in the solution of a Riemann problem posed in U lie in a set U1 1 U. Assume that

A pu) < A p,(v) for all u, v e UI, I < p < p' ( n, and that (1) is genuinely nonlinear in

all characteristic fields throughout U1 .

Let Rp(uL) denote the integral curve of Rp that contains the point uL . Let

*R(uL) denote the p-rarefaction curve associated with the point ULs i.e., that portionportio

of RP(UL) for which Ap (u) ) Ap(UL). By [9] there exists a unique curve Sp(UL) that

makes C2 piecewise C3 contact with Rk(uL) at the point UL, and such that for each

u e Sp(uL) there is a scalar s such that

(2.1) slu] - [f]

where [ul u - UL, If] - f(u) - f(uL). Statement (2.1) is the Rankine Hugoniot jump

condition, and we say that Sp(uL) is in the Hugoniot locus of uL. Let S P(uL) denote

the p-shock curve associated with UL' i.e., that portion of S(uL) for which

Ap(U) < Ap(UL). We assume that Ap is monotone on both Sp(uL) and RP(UL), so that the

curve

(2.2) Vp(UL) S (uL) u RuL

is a C2 piecewise C3 curve throughout U1 . For uR e Yp(uL), the Riemann problem is

solved by a p-simple wave: a shock wave if Ap(uR) < Ap(U) and a rarefaction wave if

Xp(U R) > A(uL) (9, 17]. We let Y denote any p-simple wave. For given yP, let

L(YP ) denote the left state of YP and let R(Yp ) denote the right state. For arbitrary

1 nstates uL, uR e U, the Riemann problem is solved uniquely by n simple waves Y ,...,y

which are separated in the xt-plane (going from left to right) by the constant states

u- UL, ...,Un+1 -uR. The states ui, and hence the waves Y P, are uniquely determined

-12-
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Finally in section 6 we givqt the proof of lemmas 2 and 3.

I wish to thank Jams GIumm for sharing with me many of his valuable insights. I

would also like to thank Tai Ping Liu, Ronald J. MA,.!na and I-Liang Chen for many helpful

discusslions.

II
-U,-%%.:.*~ . .. . . . . . .. . . . .



It takes the longest time for waves to interact if a2 - 0 or 0" 0. Assume that

a2 - 0 and to be specific, assume that aI is a shock wave. In this case, I must be a

rarefaction wave because u - 0 is both the left most and right -Lost state in the problem.

(Here we use the assumption that the waves are weak.) Now we can estimate the time at

which Q must decrease by order i.e., the time it takes aI to interact with OV
N

But the differences in speeds between a1  and at time zero is on the order of so

interaction must occur within a time on the order of T where T satisfies

IXB - XAl - T - 0

T - Mix3 - xAI -

Since two waves a1 and 01 of strength on the order of - interact before time T, by

(8) we expect Q to decrease by an amount on the order - in time T. This is
K 
2

Q(O) - Q(T) - 0(1) 1L

which is (12).

We implement the above idea as follows: given data u0 (*), we locate p-waves a and

8 whose speeds at time t - 0 differ by 0(0) - and whose x distance apart at
M

t - 0 is 0(1) CM as above. We identify these waves at a later time by means of

approximate characteristics. We then assume for contradiction that Q does not decrease

by 0(l) - in time 0(l) CM2  A consequence of this is that a and 0 may be chosen so
H2 2

that the corresponding characteristics do not intersect before time 01) EM . We finally

derive a contradiction by estimating that since the decrease in Q is small, the speed of

the characteristics a and 0 agree with the speeds at time zero sufficiently to

guarantee that they intersect before time 0(1) CM2 . By this contradiction we can conclude

the proof of lemmas (2) and (3). In the above analysis we must keep track of left and

right states on approximate characteristics. This is essentially the wave tracing idea of

Liu [15].

In sections 2 and 3 we review the Riemann problem and the random choice method and

establish notation. In section 4 we define approximate characteristics. In section 5 we

establish properties of approximate characteristics. (This is done in a ge.eral setting.)

-10-
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Let aR be defined by

uR  - T O R' UL )

Note that ik is defined for 0 4 k 4 a, and

Y k(t 3
") - 0

k+1 - ak' k - 0,...,a-1
k

Choose n so that

cR e (a,"n+I "

If a > aa, let a aR , so that then n - a. Let
R a a+1 R

SPL PR 0

uh(xi+aj+lh,tj+l) if YJ P 0 and y 0

PL
u14 -UL if Yi " 0

PR
UR if Y PR= 0

and let aM be define by

u. - To4; UL)

Now for 0 4 k < n, define

X k(j) if j 4 1

S~j i 'f J ' J-f-t a < O

i+1 if j - J+, Ok ) OM

kt] if t < tj

(u'uk+l) if tJ 4 t ' tJ+l

For k = n, define

F 0 if j 4 J, n - a

L nj) if j ( J, n < a

n i if j = J+1, a < aM

i+1 if j = J+1, a c am

-24-
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R i if j J

i if j = J+1, 0n  0 ,

i+1 if j = J+1, 0n > 4

( 0 if t < tj n = a

Y It ] S Y#1 t] if t < tj , n 4 a-1

(UnUR) if tj 4 t < tj+ ,

" 0 if tj < tj

Y gR t] -

n (uRun+1) if tj 4 t < tj+l

Let

L 0 k < n)

Ln

L = (k :n < k C a-l}

Define

(4.13) L it e Ln u Ln  Y(tj+) 0 0)

For t e L let 0
, q L, R, be defined by

-~ ) T flq; uL)

and set

L R
(4.14) L {I 6 L : aM it (a,0 1

Moreover if L*and 0M  L ( then let

L

R L
L-0z

-25-
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and set (cf. (4.8) - (4.10))

(4.-15) L (Ls I e L eS (Gji.OjR)i q -L or R)

Finally, we define
(4.16) Mi(J+I) Ltu Lu LU L,

(41)p OMu

in the case Y! 0.TiJ

Since y, is defined for all I e Mi(JtI) this completes the definition of M;(Ji
P p

and r(J+1). We leave it to the reader to verify from the above construction that
p

Properties (4.1) - (4.3) are satisfied by M (J+I) and r (J+1). This completes the

definition of the approximate characteristics.

We say that e r(J) is cancelled at (xi,ti) if 1(j) - i and j - i1. From

(4.16) it is clear that y e r(j+1) is cancelled at (xi,t J ) if and only if

£ e L u L.or £ -£R where n - q.>n r n

-26-
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J5. PROPERTIES OF APPROXIMATE CHARACTERISTICS

In this section we study properties of the characteristics r(J) and index set 1(J)

defined in the previous section. Let uh be a given approximate solution generated by the

random choice method from initial data uO . The sets r(J) and M (J) associated with

uh  are determined by the choices of u., J, 0, h and T, which we take to be given. We

let m z M(J), r = r(J). Throughout the remainder of the paper, I is taken to mean
L " eL

whenever L c M. We now develop some definitions.

Let N(t) denote the index set for the "null" characteristics that are either

cancelled or else are created by "nonlinearities" in time 10,t], t < tj; i.e.,
o 1 t

(5.1) N(t) = { L e m : to > 0 or ti .Q

We partition N(t) into No(t) and Ng(t) as follows:

(5.2) N/o(t) it{ e N(t) : to- 0)

(5.3) N 4 (t) { e N(t) : t°> 01

By Property (4.3), the index set M partitions into

MN U M-

where

M1+ = {I eM : sgn(l) > o

M- st(t e : sgn(t) < 0)

We call M+ [resp M-] the set of rarefaction wa-ie (resp. shock wave] characteristics.

For p = 1,...,n and q + or -, define

(5.4) Mq p M q

Similarly, define

p p~) n

and set

Nq qt) (t) (t)

Nq (t) Nq)(t)

so that Nq(t) is the disjoint union of Nq (t) u N q(t).

-27-
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We say that two characteristics y, and ym intersect at time tj if t(j) - m(j)

and £(j-1) -# m(j-1). The following lemma which can be verified by induction on J

implies the uniqueness of intersection times for characteristics in different families.

LEMMA (5.1). If £ e p , m eMp , and p < p', then xm - x, is a nondecreasing

0 1 0 1
function of time for t e [t ,t I n tm, t].

The next lemma follows from Properties (4.1) through (4.3):

i LEMMA (5.2). If £, m e Mp , sgn(t) ) sgn(m), and £ intersects m at time

tj C t < tj, then either £ e N(t) or m e 4(t). Moreover, if £ and m are both shock

wave characteristics, then there is at most one intersection time to, and for all

11t e [t0,t1A) n [tortm) we have

xt(t) - Xm(t)

Define

f) ( Iy(t+)I - IY£(tj-)i if £(j) - i

(5.6) Nii(1) V0 otherwise

We call Nij(£) the nonlinearity contributed by the characteristic y, at the mesh point

0 1
(xi'tj ) (cf. 16]- In particular, since y'(t) is constant on (tt,tt], we must have

0
Nij(£) - 0 unless £ e b(t1 ) and either j I j or 't - J. Define

f (t -)I if £Cj) - i and -

(5.?) Cii(£) =I )Y0 otherwise

iY (t +)I if 24j) i and j -

(5.8) Eij(p) 0 otherwise

so that

(5.9) Nij(£) - Cij(A) + Eij(1)

We call Cij(£) the cancellation and Eij(t) the error in the nonlinearity Nij(£). The

following proposition is a restatement of Lemma (GLI) in the language of approximate

characteristics:

-28-
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PROPOSITION (5.3). There exists Go > 0 such that

(5.10 Zij () 4 O0Dij,

M

and

(5.11) 1
{*q Cij(L,} - GoDij

p
for p - 1,...,n and q - + or -.

(Note that since Eij(L) = Cij(1) - 0 for I # N(tj), sums over M and Mq can be

ppreplaced by sums over Nt) and Nq(tj) in (5.10) and (5.11), respectively.)

COROLLARY (5.3). There exists Go > 0 such that

(5.12h) 1 IyjI 4 G0 [Q(0) - Q(t)]
N (t)

(5.12D) ). IY i 1 GoV
m0

Proof. N ( t), then t > 0. Thus by (5.5),

NJ- E ~ 0 ,0M

and so by Leana (GLI)

I ytj1 1 Z ij (1) 4 GoDij 4 G0[Q(0) -QWt)

N 0t) ij M ij

01This verifies (5.12A). For (5.12B), note that since lyt(t)l is constant on [ti,tt), we

must have

M\ (t J)

Thus by (5.12A)

-IYtl - IY lyll + IyjI 4 GoVo•

m M\N (tj) N0(tJ)

For j 4 J, define the set of indice pairs associated with waves that approach at

time t [cf. (3.11)]=

At) = Al(t) u A2 jt)

where

-29-
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A I(t) = {<,m> : A, m e M for some p - 1 ..... n, xi(t) < x (t)

(5.13)

and either I or m is in M}

(5.14) A2 (t) = {<,m> : t e Mp , m e MA,, for p < p', and xk(t) > x (t)}

(Here we use <A,m> to denote the set or unordered pair {1,m}. Note also that

xj(t) < x,(t) implies xk(t) p' 0 0 xm(t), so that Iy,(t)l .0 0 # Iy(t)l).

We call A1 (t) and A2 (t) the index sets for the characteristics that approach at

time t and are in the same and different families, respectively. Define

(5.15) Ai1 -={<X,m> . A(J) - m(j) - i and <A,m> e A(t-)) •

The following is a consequence of Property (4.3) together with the definition of Q and

DiJ:

LEMMA (5.4): We have

(5.16) Q(t) - ) IYLI IY.l
<1,m>eA(t)

and

(5.17) Dij - IYt. I Ym.
<AM>e Ai

From here on out, we write I in place of I , etc.
A <A,m>eA

Define A0(t) and AP(t) as follows:

(5.18) A 0 (t) {A£,m> e AmO) : either I or m is in N0(t)}

(5.19) AoCt) i (z,m> e A(t) : either A or m is in NO(t)}

LEMMA (5.5): Let A' c A(0)\ AT), T < tj. Then

(5.20) A(T) c ACM) u A(t)\A'

Proof: By the definition of ACt), <A,m> e ACt) implies that Yt(t) # 0 and Ym(t) O 0,

thus A(T) n A' - 0. Assume then that I and m are in M\Nj(T) and <A,m> e A(T). It

remains only to show that <t,m> e AO). But by the definition of A, the only way <(,M>

could fail to be in AC0) is if X and m intersect at two distinct times in [0,T],

which contradicts Lemma (5.1) or (5.2). For example, if £ e Mp and m e p,, p < P,
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then by (5.14), xf(T) > x.(T). Thus by Lemma (5.1), xL(t) > x%(t) for all t < T.

Hence <,m> e A(o).

LEMA (5.6). There exists Go > 0 such that, for all T < tj,

(5.21) A01 Jj Jym' G0 (Q(O) - Q(T)]A o (T)

Proof: By (5.12) and (5.13),

1 lyI YM' 4 Nod I NJ ' G0 [Q(t) Q- )A 0 T) R~e m eN 0

LEMMA (5.7). There exists G o > 0 such that, if

(5.22) A' c A(o)\A(T) , T < tj

and

(5.23) 'IXL ml ) > L

A
then

(5.24) Q(0) -Q(T) > I L
G0

Proof: By Lemma (5.5) and (5.22) we have

A(T) c A(0) u Ap (T)\A

Thus

Q(T)- ) I-YtI I .I < IYII IYMI + I ITIJ IT1 - IYgl I.I
A A(0) A(T) A

4 Q(O) + G0 [Q(0) - Q(T)] - L

Combining terms, this gives

Q(O) - Q(T) ) G: L
0

Since Go  is generic, this verifies (5.24).

PROPOSITION (5.8). There exists Go > 0 such that, if

(5.25) . IL )L
N(T)

for T < tj, then
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(5.26) Q(0) - Q(T) L2
0

Since T is fixed here, we set N' = h(T), etc.
P p

Proof: Assume that (5.25) holds. Then for some p 6 {l,. .. ,nI and q = -or -we

must have

(5.27) L Y I 2

p

For convenience, assume q B . y (5.7) and (5.8),

1 1yI() L1 j (L) + Ci CUL

P p p
(5.28)

ii ij +(t

where the sum on i, j is over [(i,j) < i < ± -, t 4 ti. But (i '
I ij

G0(Q(0) - Q(t)], together with (5.27) and (5.29), implies that for some Go 0,

(5.29 ~ C~(1) L .- - G [Q(0) - Qt)

'j Ai(t)
p

and so by (5.11)

(5.30) C ) G - QO ~)
iiij 2n G0(Q0 ~

Thus we can apply (5.11) again with q =-to obtain

) C (1) - ,CP 4 G0[Q(0) - Q(t)]

p
or

(5.3) ). ) L GOtQ(0) - Q(t)1
ij N Ct) 2

p
Therefore, by (5.7) and (5.8),

seNj Ct ij seN4 (ti- seN Mt
p pp

R..- - G 0 0) - QMt)
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We now have that for some Go > 0, both
L

(5.32A) Y (Yrl - Go(Q(°) - Q(t)]

reN
+

p
and

(5.33B) - G[Q(O) - Q(t)]

seN 

+

p

By Corollary (5.3), this implies that for some Go > 0, q = + and -, we have

(5.34) Y L-L I - G0 [Q(0) - Q(t)]

p0

Let A' -{r,s> :r e N, s e Np0 I. Then by (5.2), (5.5) and the definition of A,

A' c A(O)\A(T). Moreover,

X l l 'yin' •  1
Xr

1 h~I {L { G0 [Q(0) - Q(t)]}2

A' reN seN

(35)

2-- G0 (Q(O) - Q(tl]
4n

2

where we use the fact that L 4 V0 4 G and [Q(0) - Q(t)] 4 Go for some Go > 0. Thus

by Le.ma (5.7),

Q(0) - Q(T) 1 1 L
2 

_ [Q(0) - Q(T)]

G 04n

or

(5.35) Q(0) - Q(T) ) 8 0 
2

Since Go is generic we can take SG to be Go , so (5.35) establishes Proposition
8G0 n2

(5.8).

CorollarX (5.8). There exists Go positive so that if T < tj and

(5.36) Q(0) - Q(T) 4 L

then

N(T)
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We next define index sets for characteristics that intersect a given characteristic in

a given time interval. Let

(53)(j) m e M m(J) 1 t(j) and <t,m> e A2 (t.-)}
(5.39) BIIM

Bj (j)

and for tj e [tj 1 _1,tj1 ) and t2 e (tj2 ,tj2+1 ),  let

j2
(5.40) BI[tlt 2] I B )

In addition, for £ e M, define

s-(j) s {m eM- : m(j) 1 £(j), m(J-i) > x(j-1)}
p

(j) - {m eM- : mcj) - x(j), mcj-i) > L1j-11}
M p

B-cj) - B- W B L(j)

For q = L, R or absent, define B [tl,t 2] as in (5.40). (Note here that script

denotes a set, while upper case B denotes a real number.)

In the next section, we use the following technical result:

PROPOSITION (5.9). Let

(5,41) M-[iLiR] - e ( M , i(0) e Mi ,i •
p Ip 1()e[L'R]

Assume that a e M-\N(T), s(0) = iL, that

(5.42) ; It ) 4L
M; [iL, iR]

and that

(5.43) P

for all i e (iLiR] such that Y 0 < 0. Then there exists Go > 0 such that, if L <

and

(5.44) j I 1 > L

pR [0,T]

then

(5.45) Q(O) - Q(T) ) IL2
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Moreover, if the hypotheses are satisfied with sCO) - i R and Bp-L[OT) > L, then again

(5.45) follows.

To prove Proposition (5.9), we use the following lemma:

LEMMA (5.9). let {L 1m be a nonnegative sequence of numbers which satisfies

(5.46) 0O(L <L

i

(5.47) L. i 3L

Then

(5.48) L L.L. ;0L

i
Proof. Let i* inf{i : *Li > LI. Then L * L implies that

F-i +1

Therefore,

i m

I(i<j~fm 1=1 1=1+1

Proof of Proposition (5.9): Let

0 =58 [0,T]\ N(T)

P PR

Let

B 0

Without loss of generality, assume LO > 3L. If not, then L.0 > L, in which case

Proposition (5.8) implies that

Q(O) -Q(T) ;' 1.. L2
G 0
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which gives (5.45). Let

Bio {x £(0) i

and define

=B

io

Let i" = max{i •Li 0}, and let i' - min{i",iR}. By (5.42) and (5.44),

I"

L 3L
iliL

Moreover by Property (4.3), Li - -= 0 if Y0 < 0 and Li - 0 otherwise, so that

Li 4 L for all i e [iL,i"]. Thus the conditions of Lemma (5.9) hold, and we have

L Lj ; L
2

i L(i<j4i'

But by definition, <I,m> e A'(0)\ A'(T) if t, m e 80 and 1(0) 9d m(0). Thus

A(O)\ A(T) > I tmlY > L L > L 2

At i L i<j~i'

Therefore, by Lemma (5.7) we conclude

I 2
Q(0) - Q(T) > 1 L2

Go

Finally, define Xx[t], the speed of the characteristic y, at time t as follows:
0 1

Let £ e M ,t [teitj,+) n (t ,t9 ), and assume that £(j) - i. Then

X(YP.) if I < 0

Ap(u Ltj) if t > 0

L XWe now estimate the change in u£, u£ and AL for CM(J)\ N(J)

LEMMA (5.10). Let £ e M(J)\AN(J). Then

(5.50) Iuq(t +] - uqt -]I 1 GO{B (j) + D
I i I1 0 t L(J),j

(5.51) it +] X A 1[t -] ( G 0 (B~j) + B-lj) + C£(j),j + D£(j),j}

for q = L, R.
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COROLLARY (5.10). Let X e M\N(T), t1 < t 2 < T < tj. Then for q - L and R,

(5.52) -u (t , u 1 [tC11 4 G {B [tilt + -Q(t (t2)}1
itL 2 J ~1 0 it , 2] [Qt) 2~

(5.53) JX Lt2] - X9[t 1]j C G0 {B[t 1 1 t 2 I + B9.[t 1 t 2 ] + (Q(t) - ]1/2

Moreover,

(5.54) juqtt 2] - u qt 1  GV

(5.55) XX1 [t 2] - Xk[t 1 i C G0 V0

Let a be a fixed equidistributed sequence, 0 C a. C 1 115, 16]. Let I =

(c,d)C[0,1] and let 0 < N1 < N2 . Define

N(I,N1,N2) S Card{j e [NIN : a. e I}

The following is a result regarding equidistributed sequences [15, 161:

LEMMA (5.11). For every M > I there exists No > I such that, if N N o, then

(5.56) 1i11- N(IJj+N)i < 1

for all j C MN, I = (c,d)C[0,1], III = Id-cl. Moreover, for the best equidistributed

sequences,

(5.57) N(Ma) C GOM2 ,

where N(M,A) denotes the infemum of all such No for a given a.

For £ e M, t e It ,tX), define

(5.58) Ej(t) - xj(t) - x (t) - ft0 i X[t]dt
t i

THEOREM (5.12). For each equidistributed sequence a there exists a positive function

6(m) C 1, 6(u) * 0 as i + 0, such that the following two statements hold:

If

(5.59) h < 6(u)v, t e (t 1t

then

l9.I < ]i

for all I e 41+(J) such that to = 0, t1 V.
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since z p(u z P (u 1 [~01) is positive for I e M+ and negative for i e M-; and

since zpincreases from m o M going from XA to x at time t =0, we can write

(6.59) V I 'U{I} LM

Since R c RDu { L n N(T)}, (6.57), (6.58) and (6.59) imply

(6.60) U Ji [ 0, X

where X is a set of small measure,

(6.61) m{X} < 46 < 1
M 16M

where we have used (6.22) to estimate 6.

By (5.59), if r e RD, then

(6.62) lYrI < lE

-r 1 2

because h < G0 ( 1 )2 T by (6.14). Thus (6.60), (6.61) and (6.62) immediately imply the

existence of r e RD such that (6.46) holds.

Similarly, we conclude as in (6.60) that

where X satisfies (6.61), which directly implies the existence of s e So satisfying

either (6.47), (6.48) or (6.49), (6.50).

Define [cf. (5.38) - (5.40)]

(6.63) RL [it e R :x (0) < x (0)1

(6.64) SR it e S :x (0) ), x (0))0 0 £ s

(6.65) B0  {X e p', P p and y.intersects y. in [0, T/21)

(b.b6) BO = q'

(6-7) r B [0, T/2), B r (. I
r

(6.68) B.E5 8(0, T/2], Bs 5 t
r

(6.69) B B [0, T/2], 13 E YI q =L, R or absent.
sq sq sq

sq
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knd either

6.47) zp(UR[0])

or else

6.49) z (u~ R[ie 1 1

,nd there exists 'L', 'R with iA 4 1 is < 1R 4 i such that

6.50) IYP 6

or all i e M p(iL'iR] , and [cf. (5.41)]

6.51) 1 Iy~I

6.52) 1, jyij M4

'roof. We first verify the existence of r e R0 satisfying (6.46). let

6.53) L E{I e M : yo) e [xA#,;]})

,nd let I dntthitev l[z(u LLJ0J, z (u R(0])]. Le IIdenote the length of
he interval I V Let

6.54) m EInf{z(uh 0Cx)) :x e (x,,x]1

ly (6.39) and (6.41),

6.55) -14M m 6

'roperty (4.3) states that the approximate characteristics partition the waves in the

.pproximate solution uh at each time step. This together with (6.40) implies

6.56) U I16
L ~

ly lenmma (6.4),

L\M p

nd since we assume Q(0) -Q(T) 4(GM 2 Corollary (5.8) implies

LnN~(T)x
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the case when =-Inf {z ( u (x)) being handled analogously.

By (6.39) there exists a point x = (I 4 -)h such that
2

(6.40) Z (u h 7)2>zA
p 0 M

Define iA and iB by

SBSupli : i T1 +2.1 and z (U h(x )
A2 P 0  ± M

(6.41)

B = Inffi : i > and z CuhCxi+)) 4 61
B 2 p 0 i

Let

xA "Aj 1

(6.42)

XB ='B 2

Define R cM- and S cM; by
-p

R {fi e Mp:x (0) e (x1 ,X)}
(6.43)

s it e M-: x (0) e (x,x2

and let (cf. (5.1)]

RO RAt (T)

(6.44)
so =S \N (T)

LUHM (6.5). The following estimate holds:

(6.45) IXB - xAj < (

Proof. By (6.40),

f, fI u hxf lx ;,- I x. - xAI

Solving for IXB - XA1 gives (6.45).

PROPOSITION (6.6). If Q(O) - Q(T) 4 .- ~ then there exists r e ROand s eSo

8CO) - is, such that the following conditions hold:

(6.46) {z Cu L(0)), z (U (0O])) C -3 -

p r p r 4- am~
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We use this to construct two characteristics Yr e F +  and Y e F which would intersectp s p

before time T if there were no interactions to deflect the speeds of these

characteristics from their initial speeds at time t = 0. We then assume that Q(0) -

Q(T) 4 - 2. By this assumption, there exists such Yr' Y which are not cancelled in(GM)2

time [0,T]. We then use the same assumption to obtain estimates for the change in the

speeds of Yr and y between time t = 0 and t - T. These estimates are sufficient to

guarantee that in time [0,T] the wave speeds of yr and y s are not deflected enough

from their initial speeds to prevent them from intersecting before time T. This

intersection implies that one of them is cancelled before time T [cf Property (4.1)].
1

This is a contradiction and thus we conclude that Q(O) - Q(T) ) - . we first use
(GM)2

Leona (6.1) together with (6.30) or (6.24) to estimate the total variation in p

contributed by characteristics not in the p-family.

LEMMA (6.4). Our assumptions on uh imply

(6.36) 1z (u R [0]) - z (u L[O])I

Proof: A restatement of Lemma (6.1) in the language of approximate characteristics is that
R L 1 4 Go l

(6. 37A) Iz(u (0) - z (u[0])I , j IY(o)l

for all 9 e m\ mp; and if z is a coordinate system of Riemann invariants, then

(6.37B) Izp(u (0]) - z(u[0])I •4 IT,))1 •

But by Property (4.2)

(6.38) I. YO(0)l = V0 C V

M
Thus statement (6.36) follows directly from either (6.37A) or (6.37B) by estimating the

right hand sides using either (6.30) or (6.34A), respectively.

By (6.26) there exists p, 1 C p 4 n, such that

1 _ Sup Iz (u h(x))l

For convenience we assume that

(6.39) = Sup (zp(uh(x))}
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In the case that z is a coordinate system of Riemann invariants, assume that V is

arbitrary and that

(6.31) V 0 4 V

and

(6.32) M

where A is sufficient for U and V in Lemma (GL3). Under these assumptions, if

(6.33) h <min(!- (;; 2 ' ( IV2G/2

hG 0 M G30VS 0 " \(12r2 G32) "

then

(6.34) Q(0) - Q(T) > 1
(GH)

where Q is the quadratic Glium functional associated with uh (cf (3.11)]. Note that by

(6.25), any uh that satisfies either (6.29) or (6.31), (6.32) must also satisfy
hI

Eu (%1t)US

for i = 1,2, so in particular

2

(6.34A)

The remainder of this section is devoted to the proof of Theorem (6.3). From here on

out assume that uh is a given random choice method approximate solution that satisfies

(6.1), (6.33) and either (6.29), (6.30) or (6.30), (6.31). Let r and M denote the

characteristics and index set associated with uh and the time level tj, where

(Here [ J denotes "greatest integer in".)

The choice of zp for the p-wave strength parameter determines the definition of wave

strength for the characteristics in r Ecf (4.6)]. In this case, for x e M,

Y (t) -- z(uR[t])- zW(u (t]

defines the signed strength of the characteristic y, at time t < ti. Recall that

0 1
L(t) -~ T is constant for t e [t ,t ), and identically zero elsewhere.

The idea in the proof to follows is this: since Ou0 (*)IS - and u E(.) =,
0 a w 0

there must be a "spike" in the initial data of height I and width on the order of cm.
M
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In the analysis to follow, it is important to bound changes in Xp by changes in

This can be done because z + u is a regular map, and VA *R > 0. Definep p
pl(T (a~u ) )

(6.20) 
A Inf X

O'uL

where a = z pu) - z p(uL ) and the infenum is taken over all values of a, uL such that

u = T (o;uL) e U.p

Now let Go  be large enough to satisfy all previous conditions, as well as

(6.21) Go >Max{1, X
- 1

, V)

Define the following constants:
1

(6.22) 6 S 6(G0) = -

64G 0

1

(6.23) G S G(6,G 0 1  1 2
6

2GO

(6.24) M2 - 2 6,G0) -

Choose U to be a sufficiently small neighborhood of u = 0 so that (6.14) holds and

(6.25) U C {u : Jul 4 I'}

for i = 1,2. We prove the follow theorem which is a restatement of Lemma (2) of the

Introduction.

THEOREM (6.3): Let uh be a fixed random choice method approximate solution satisfying

(1). Define

(6.26) 1 h *
14 0 S

(6.27) - luh(0)l 1
L

2
(6.28) T E (GH)2

In the case that z is not a coordinate system of Riemann invariants, assume that

(6.29) VO 4 V ,

where V is sufficient for U in Lemma (GL2) and

(6.30) v 4 6_
G
o0
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(6.13) (zp,(uR)J Z Zp Iu L Go IfPf
M

Proof: Statements (6.12) and (6.13) follow directly from (6.3) together with the fact that

S (UL) makes C
2 

P.W. C
3  

contact with R p(UL) at the state UL [Cf. (2.11.

It is clear from (13) that if U is sufficiently small, then

(6.14) Ilp(uR) - zp(u L) > 2 1zp,(uR1 - zp,(UL)I

for all p-waves with left and right states uL and uR in U, p' ;A p.

The next lemma is a technical but elementary uniform estimate for the speed of a p-

shock in terms of zp .

LENKA (6.2): Let S denote a p-shock with speed s and left and right states uL and

uR. Then there exists a constant M1 > 0 and a constant Go > 0 depending only on M I

and f, such that, if K > M, and

1

(6.15) juqj < , q = L,R

z (u L ) + z vCu
R)

(6.16) zp(U) - 2p)u1) 1

and

(6.17) z p, (U) - p,(UR) I M
p 0

for all p' )0 p, then

(6.18) ( Cu) - a > 1p: GM

Proof. Lemma (6.2) expresses in a uniform way the fact of Lemma (2.1) that

(6.19) s = )p(-u + u- + 0(1) Is12

The existence of M, follows from (6.3) and the uniformity follows from the compactness

of U together with the fact that

A p >0a)z p
p
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satisfying (6.1) together with

(6.5) Vo  I IYPoI < V
i,p

takes values in U for all x and t, and satisfies the conclusions (3.18) - (3.20) of

Lemma (GL2) as well. We say that 1 is sufficient for U and V in Lemma (GL3) if

(6.6) V0 < V

together with

(6.7) 
lu (. I 2.

0 S 14

guarantee that uh takes values in U for all x, t, and satisfies the conclusions

(3.18) - (3.23) of Lemma (GL3) as well. It is clear from the statements of Lemmas (GL2)

and (GL3) that for every neighborhood U of u = 0 there is a V' such that any

V < V' will be sufficient for U in Lemma (GL2); and in the case of a coordinate system

of Riemann invariants, for every U and V there is an 9' such that any 4 > 4' will

be sufficient for U and V in Lemma (GL3).

For u e U, let lul SupjzP(u)j, and for functions u : R - U, define

p(6.8) Iu(x)l - UI p (u(X))l,
p~x

(6.9) Iu()L 1 f :.Iu(x)idx

(6.10) Eu(.)I s  supflu(x)l •
x

The following two lemmas will be needed. The first lemma estimates the change in Zp,

across a p-wave, p' # p:

LEMMA (6.1): Let yP be any p-wave with left and right states uL and uR satisfying

(6.11) juqI j 1  
, q L, R

Then
Go

(6.12) Iz ,(uR) - zp.(uL) _ i -- IY:I

Moreover. if z is a co rdinate system of Riemann invariants, then
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j6. THE MAIN ESTIATE

In this section we study approximate solutions uh(x,t) generated by the random

hchoice method from initial data u0()wih aife

(6.1) uh 0
0

We study the approximate solutions in a coordinate system of Riemann invariants if one

exists, and if not, then in a coordinate system that is a good approximation to a

coordinate system of Riemann invariants near u = 0.

Thus, let z - (z1,...,zn) denote a coordinate system of Riemann invariants if one

exists; i.e., in this case assume that the mapping u + z is a 1 - I smooth map taking

0 + 0, and which satisfies the condition

(6.2) a . R
3zk k

Such a coordinate system exists if and only if there is a choice of eigenvector fields

R) k- such that

Riiy - 0

for all j, k e {1,...,n}, where [ 3 denotes the Lie Bracket. A coordinate system of

Riemann invariants always exists in the case n - 2.

If a coordinate system of Riemann invariants does not exist, then choose z -

(zi,...,zn ) to satisfy Icf. 6, 17)

(6.3) a ROO6.3) zk = Rk(O)

In either case, let zP be the wave strength parameterization of the p-shock-rarefaction

curve Vp(UL ) in a neighborhood of u = 0 [cf. (2.1)].

For example, we take 0 - zp(u) - Zp(UL) in the equation u - T (a;UL), so that

(6.4) Y = zP(uR) - zP(uL)

defines the signed strength of a p-wave 9P with left and right states uL and uR.

We let U denote a neighborhood of u - 0 in which Riemann problems are uniquely

solvable such that zp is a regular wave strength parameter for all p-wave curves in U,

and such that Lemma (GLi) (cf. (3.15), (3.16)] applies with this measure of wave strength.

We say that V is sufficient for U in Lemma (GL2) if any approximate solution uh
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thus verifying (5.60). For the best equidistributed sequences, N(M,a) G G~ii by Lemma

(5.11), and so in this case

60)- G0U2

by (5.63) and (5.64). This completes the proof of Theorem (5.12).
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IN

IEt(1,N)l = I. EL(j)I
J- 1

(5.71) -C (I - -X)hN"2  
+  

"AhN
'I I (_. h N 1 h I

k h (" X 1)hN2 + 
hN3 

+ 2S A hN

But since N ,

INi (1 - - )N + I N

IN2 ) (. A1)N - I N

2A k 1

N3  0  M

Substituting into (5.71) gives

IE,(1,N)I (1 I - 2S X )IN + (A.) A) 2. hN

- I h 1 h I (
-(I X )~h(! x ),I)N + (I - - 1 hN

h 1 h I

+ 2 A0 hN + .- hN + !L A hN

1 kc
< 2 - hN + 3 1A hN

ft hO0

t

Now since hN = conclude that

i i1 1I kA(0c

E(1,N) tj {2 2- + 3-A (0,N)

Similarly,

1E(mN+I,(m+I)N)I 4 t3 {2 . + 3 I A (MN+I,(m+I)N)}

Therefore,

m 1

(2+ 3 k 0 .1 1

h I I i A t 1
={2 + 3 !E A} ,t }t

i h 3M

C j tj ,
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Kpl1J 2 ) x ) - xt(tji) -
t 2 ptIdt

and let

By the definition of approximate characteristics,

j2
E (jilj2) - 2 Ez(j)j-j 1

where

(2i X )h, if a ( Ah j h

{c* kA x) - 1)h, if aj > hj

For j e [1,N],

ixA - A11 ( AL(1,N) E A0

Define
k }

N1 (J  j h i

(N{j .: aj >A 1  ,
k

1, [0, 1 - X A1 - A 0]

12= (1 XI + A0 ,1]

- [1 - A - 0, 1 - A0h3 11 h 1

and set

(5.70) Nn  B N(InI,N) , n - 1,2,3

Then by (5.70)

N1 ( N1 + N3

N2 e N2 + N3

Now we can estimate

-40-

------------------- ... . , - . , - ,- . . . - - - ,, , .. - .- - , -
.. "



h N

and by definition of 6

N > N(M,a)

By (5.51),

(5.66) AP I[t..+] - A (tj -1- A 1(11j)

Thus for some interger m, 0 < m < M-1, we must have

(5.67) A (mN. (m+1)N) 4 NE M HE1

But this implies that for some e 8 mN,(m+1)N],

xj + ajh e (xi + XL~jk, 3A+ALjk4-~-

or equivalently,

ae [A1t.]X )Lt + Aj- k

where i -.t(5). This follows because (5.66) and (5.67) imply that there is a fixed open

intrva 1,1 [A(J)X J) -!A I for all j e [mN,(m+1)N], such that III A > -1

where we use (5.62). Thus by Temua (5.11),

N(I,mN1,(m+1)N) ) III A ). N > 0

and so

N(I,mN,(m+1)N) I

By definition of approximate characteristics, this implies that

1A ( Xft1 1)- X (u I t J])I1 ;j

for that value of j e [mN,(m+1)N) for which aj e I. Thus by (5.65),

IYO(t+)1I4 3G ( 4

This verifies (5.59) since t5 4 V < ti implies 1YI' - IYI(t +)I.

we now verify (5.60). Fix h C 6(11)ti and set N St 3 N- h-
1  so that

h t

MN

and by (5.64)

N > N(NM.0

Without loss of generality, we do the case I e M(tj)\ N(tj), the case it e tj

being simildr. Thas let I e M(J)\ N(tj) be fixed. Define

*~ ~ ~~~% . . . . . . -.

*~ * . .%



If
0 1

(5.60) h 4 j(p)t 3 , t e [to ti)

then

IE i,(t)I 4 t ,

for all £ e M.

(Here (5.59) says that the strength of rarefaction characteristics tends to zero uniformly

with h due to the splitting of characteristicsl and (5.60) says that as h + 0,

characteristics move wih characteristic speed.)

Proof: First, for I e M, define [cf (5.51), Lemma (5.10)]

J2
(5.61) A (jl,j2) = >2 G0{B (j) + B-0) + CI(j),j + Dt(j),jl

Set A = Max{2,G V 0, so that

(5.62) A(Jl,j2) 4 G0V0 4 A, A > 2

for all j1, j2 < J. Let and P > 0 be given. Let M be the smallest integer such

that

kc 1
(5.63) m o 3GoA(2 + h)u ,

" and define

(5.64) 6(U) - 1N(M,a)

where in addition to all previous estimates, Go  satisfies

(5.65) IY, I 4 GIA(uL(t] - ut]l
P

r."+ p0 1t 1I

for all £ eM+ p = 1,...,n, t£ t < t£ < ti. (Recall that the strength Iy(t)I is

0 1
constant and equal to Iyvi for all t£ 4 t < ti.) Such a Go exists by Property (4.3)

together with the assumption of genuine nonlinearity. Here N(M,a) is defined in Lemma

(5.11). We first verify (5.59). For this case choose v > 0, and let I e + satisfy
1P

t 1 > V. Fix h 4 6(')v, and set

N = h

so that
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Theorem (6.3) is a direct consequence of Proposition (6.6) together with

PROPOSITION (6.7): If Q(0) - Q(T) < 1- where uh satisfies our previous assumptions,
(GM) 

2

* then either r e NM(T or s e N(T).

* Proof of Theorem (6.3): If Q(0) - Q(T) < - , then by Proposition (6.7) either
(GM)2

* r e N(T) or s e N(T). But by Proposition (6.6) both r and s are in M\NJ(T). Thus

*by contradiction we must have Q(O) - Q(T) > G)

It remains to give a proof of Proposition (6.7). Proposition (6.7) is a consequence

of the following lemmas. The idea is to show that if Q(0) - Q(T) < 2#, then for
(GM)

* t < T, X (t] and X [t] are sufficiently close to X (0) and A (0], respectively, to
r a r s

guarantee that the characteristics y r and ysmust intersect before time T. Then by

*Proposition (5.2), r e NI(T) or s e8 ()

LEM14A (6.8). Assume that Q(0) -Q(T) 2 L. Then
(GM)2

-(6.70) L. I Y9.I

0

*(6.71) 1 IyI M

S R

0

* Proof: By Property (4.2),

TV(z (u h(Om) = ). Iz (u R([0) z z(u L 0lI
p 0  p i p I

*This together with (6.40) - (6.43) and (6.46) implies that

R L

(Here we use the fact that z (u (t]) z p (u I(t)) is positive (negative] for

*L e M'E(9 e M , respectively.) But
p p

RL RL tl (T)

0
and by Corollary (5.8),
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Io 6

N4(T) G

since we assume Q(O) - Q(T) ( - Thus by (6.22), 6 < , so

(GM 2,332

RL £ 414 4M M
R
0

Similarly, in the case (6.49), (6.50) of Proposition (6.6), we must have

N4(T)

em4 M 1

Since S R , the case (6.47), (6.48) immediately gives the conclusion (6.71). This

completes the proof of Lema (6.8).

LEMMA (6.9A): If L SM p ,\ T), p' y p, and x1(0) e (xr(0), xsl0)l, then in time

(0,T] Y either intersects all the characteristics in RL (the case p' < p) or else it

intersects all the characteristics in S R  (the case p' > p).

LEMMA (6.9B): If i e Mp . A\T), pI # p and y, intersects yr or ye in time

[0, 13, then in time [0,T], y,7 either intersects all the characteristics in RL or else

it intersects all the characteristics in SR.

Proof: Since a is assumed to be best equidistributed, statement (5.60) of Theorem (5.12)

implies that for any I eMp \N(T), I 1p , n, and t 4 T,

Ixf(t) - x(O) - ft XX[t]dtl r )it3 = (G ht)
2

Thus

(6.72) IxL(t) - xf(O) - Xt, • + G E
p 03

where without loss of generality we have taken G0  large enough so that

~G o
Ix~t W- I <

p 1

for all I eM p(j), t < ti.
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*For the proof of Lemma (6.9A), assume that it em 1\N( T), p' #p. We do the case
p

p' < p and Yjintersects Y r in time (0, T/2)1 i.e., we show that Xi(T) - KnIT) 4 0

for~~ ~ al[' cf. Prop. (5.1)]. By (6.72),

x I(T) - x ri(T) - x it(T) - x rCT) + Xr(T) - x r,(T)

(6.73) 4 [x it(0) - x r(0)] + (A P - A IT + 2E

+ Ex r(0) - x r O)] + [A - X p IT + 2Z

Since y intersects y r in time (0, T/21, (6.72) also implies

0>x (1) - r2) > [x (0) - xr (0)) + [A, '(0) - A (0)] E

Moreover, by Lemma (6.5), (r0 ~0]~IB-XI(-

Therefore substituting into (6.73) yields

x (T) - x , (T) -C ( (0) -A(0)] + {'+ E

(6.74) + - + 5(+ t 2+=

+ LC- -+3 + -LO(G ht )'2 + OG
6TX TA 0OJ MA 2

By (6.28) and (6.34A) we have

2F-K 2( 2 <
(6.75) CGM G

by (6.33), h < P. 2 s
30F2G

(67)10 /2 10 V'2G02 1/
S(G ht) 2

(6.77)
MA 3

Thus (6.74) implies
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X(T) Xr,(T) < 0

This completes the proof of Lemma (6.9A).

For the proof of Lemma (6.9B), assume x eMp,\N(T), p 0 p'. We do the case p' < p;

i.e., we show that if I e Ap, , p' < p, and xt(O) e (Xr(O),'), then y. intersects

in time (0,1T] for all r' It suffices to show that x?(T) - Xri(T) C 0.

x (T) - Xr,(T) 4 [x(0) - Xru(O)] + [A - ApiT + 22

4 em - AT + 2E

_4 2 _/ 2G 0

=-1 + CK 2 ¥ (G hT)/2 t -T < 0

where we have applied (6.75) - (6.77). This completes the proof of Lemma (6.98).

LLMKA(6.10). Assume that Q(0) - Q(T) 4 2 . Then for q 0, r and s (cf. (6.63) -

(GM)
(6-69))}

(6.78) B8 C

Proof. Write

Sq 5q\ N(T) Sq\ NT)

By Corollary (5.8),

(6.79) C.
Go4

Bqll(T)

since we assume that Q(0) - Q(T) 2 . On the other hand, if £ e Bq\ (T), then

Lemma (6.9) implies that Y intersects all the characteristics in either R0 or 0  in

time [0,T]. For example, assume the case RL, and define

A' - (<A,r'> . £ e Bq\N(T) and r' e R0

Then A' cA(0)\ AT). Thus Lemma (5.7) implies

(6.80) ),1TLI 'yr'' C- G0
2
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1
since we assume Q(O) - Q(T) ( - 2 But by Lemma (6.8),(GM)

2

A' Bq\N(T) RL
0

(6.81)

6
B \N(T)

Combining (6.80) and (6.81) gives

(6.82) 1 IYO1 42G 0

B \N(T) 6G 2M
q

and combining (6.80) and (6.82) gives

4G0 6
B C-(-
q 6G214 M

where we have applied (6.22) and (6.23). This completes the proof of Leu-a (6.10).

1
LEMMA (6.11): If Q(0) - Q(T) 4 -, then

(GM)

(6.83) Bs 6sq M~j

for q - L and R.

Proof. First assume that (6.48) of Proposition (6.6) holds, and write

B. = I1 + I

8- 5-nNIT) 8 \,(T)

By Corollary (5.8),

ly GM

BnN(T)

and moreover (as in the proof of Lemma (6.10)), A' c A(O)\A(T) where

A, E f<x,s'> B so e SR, x , (0) = x (0))
a 05

(Here we apply Lemma (5.2).) Thus as in (6.80) - (6.82), Lemma (5.7) implies that

- 4G 0  6sq 8 q6G2M M
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where we apply (6.48) in place of Lemma (6.8).

Now assume (6.49) - (6.52) of Proposition (6.6) holds. In this case (6.50) - (6.52)

satisfy the hypotheses (5.42), (5.43) of Proposition (5.9) with L j.Since we assume

Q(O)- Q() 2' and I 62(A)2 G (-j) 2, we can conclude
(GM)' (GM)2  M 0 N

sq m

for q - LR. This completes the proof of Lemma (6.11).

LEMMA (6.12): Assume that Q(0) -Q(T) 4 1 * Then
(GM)

(6.84) A rO[] -A (0] G 1 1
0

Proof. We prove Lenmma (6.12) by satisfying the hypotheses of Lema (6.2). First, (6.46)

implies

(6.85) zp(uL 3

and (6.47), (6.49) imply

(6.86) z (UR[ 3

Leuu(0], and let S demote the p-shock

S Y

Let {uL *u R denote the left and right states, and 0 the speed of the p-shock S. By

(5.49) X a 0] - a, and (6.86) gives

p p a S

By (6.39) we must have 
z(L

Thus

z (u L + z (u

2 SM

By (6.85) L Ru' z(s

z (u)- P p-

p 2 16M
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Moreover, for p' # p, the difference in zp between uR  and u is bounded by the

total variation in zp of all waves that lie between xr(O) and xs(O) at t - 0. Dy

Property (4.3), this can be estimated by

Iz *(u) - z p(U )I B 0+I p,(u1[01) - zLp, ,I
M

6+A . 26
NM 4 '

where we have applied Lemna (6.4) and Lemma (6.10) in the second inequality. Thus Lemma

1
(6.2) applies with L to giw

S(u) - a 4
p G 0N

Therefore we conclude

A r[0] -A a [0] A p(U) - 1 G M

Proof of Proyosition (6.7): Assume that Q(T) - Q(0) C -G2. We show that Yr
(GM)2

intersects Y in time (0, T/2]. By Proposition (5.2) this implies that either r e N(T)5

or s e N(T). Thus it suffices to show that x,(T/2) - xr(T/2 ) 4 0. By (5.53),

IXT/2] - X[0] -C G0 Bs + B- + [Q(0)-Q(T)jI2}

(6.87)G{ 1 3G0 6

where we applied Lemas (6.10) and (6.11). Therefore we can use (5.42) and (5.44) to

obtain

x (T/2) I x (0) + fT/2 X (t)dt + (G0ht3)'2
(6.88) 36G

(6)x(0) + o[0] T +--6--0 -+ (G ht)

Similarly, T 
3 6

G0OT 11ht)/2

(6.89) xr(T/2) ; x (0) + xL[0] T - 3-G 0 2 _ (G-hto "

Subtracting (6.89) from (6.88) gives

x (T/2) - x (T/2) 4 [x (0) - x (0)] + {x [0] - A (0]} ir s r a r 2
( 6.90 )3-0 o

+ 36G T + (G0ht)V2 j
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and by Lemmas (6.5) and (6.12) respectively,
eM

Ix ( - xr(0)1 4 r-

x (0] - (0) -

0

Therefore

C 36G 0 T
x (T/2) -x (T/2) < {.r-. + 2(Gbt) 2

s r0 4J 2G0M'

(6.91) 2 62 4G M(G 0ht 112

T 0 % T Me

By (6.28) and (6.22), (6.23),
2G M

2
Ec 2GOM

2
c 2G0 230<

(6.92) 2G 0 -2 C=G0M 26 3Go <
6T 6CG

2
M
2  

6G
2  

3

By (6.22)

(6.93) 6G
2  1

By (6.28) and (6.33),

(6.,41 • • ; /2 3/( '2 '[2 3 2
4G M(G ht3 " 4/ G 3/2 !~ 4F2 MG31  1,2

(6.94) 0T 7/2C r 0 h__<_____

0

Finally, putting (6.92) - (6.94) into (6.91) yields

xs(T/2) - Xr(T/
2
) < 0

This completes the proof of Proposition (6.7), and hence also completes the proof of

Theorem (6.3). The proof of Theorem (6.3) also applies to the case of periodic data, in

which case I ' I S and Q(t) are defined on each period.

L%
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